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AN ANALYSIS OF COMPACT HEAT EXCHANGER PREFORMANCE

Sunil Sarangi and John A. Barclay

ABSTRACT

Many cryogenic heat exchangers employ high-conductance metallic screens or

perforated plates separateciby insulating spacers normal to the fluid flow

direction. The former insures a high rate of heat transfer between the fluid

streams while the latter reduces longitudinal conduction. Packed-bed regene-

rators employing wire screens, perforated plates, or granular particles also

have a similar structure.

In these exchangers, any individual plate or particle has very high ther-

mal conductivity and is essentially at a single temperature. A: a result, the

temperature profile along the length consists of many steps, rather than a

single continuous curve. Conventional analysis based on a continuous tempera-
,, ,. .........

ture profile tends to ovm?stimate the efficiency of these exchangers.

Axial conduction down the bed, caused by finite contact or spacer resis-

tance, further reduces the effectiveness. The ineffectiveness due to axial

conduction adds to that due to t’initenumber of plates and finite heat trans-

fer coefficient.

A closed form expression is

exchanger with given design Ntu

derived for the efficiency of a compact heat

where the exchanger consists of n layers of

metallic screens, plates, or particle layers. It is observed that th~ effect

of discrete temperature profile becomes significant when the per stage design

‘tu ‘Xceeds about 0“5”



INTRODUCTION

Many counterflow heat exchanger concepts [1-41 utilize high conductance

metallic screens or perforated plates separated by insulating spacers. The

former insures a high rate of heat transfer between the fluid st?%ams while

the latter reduces longitudinal conduction. Packed bed regenerators made of

metallic wire screens, perforated plates, or granular particles have a similar

arrangement. The contact resistance between successive screens or particles

serves to reduce axial conduction. The normal design method, which may be

considered a sort of “continuum approach” assumes a uniform distribution G7

heat transfer area and a constant axial conduction parameter [5,6].

But, in practice, an individual plate or particle in these exchangers has

very high internal conductivity and is essentially at a single temperature.

For example, consider a heat exchanger running with gaseous helium and opera-

ting in the laminar-flow regime. Depending on the geometry, the Nusselt num-

ber is between 3 and 8. Using thermal conductivities of helium gas and stain-

less steel, we get a conservative estimate of the Biot number,

‘~ ~
‘Bi ‘ ‘Nu =!< 0.08

‘ss ‘5

(1)

At such low values of Biot number the plates may be considered to be isother-

mal. The temperature gradient is sustained by the insulating spacers or con-

tact resistances. As a result, the temperature profile along the length of

the exchanger bed consists of many steps, flat portions representing the metal-

lic plates alternating with steep rises representing the insulating spacers or.. .- .-..-..

contact resistances. Approximating the stepped temperature profile with a

continuous one tends to overestimate the efficiency of the exchanger,

.,.. .,, -...
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The overall inefficiency of a heat exchanger

sources:

1. finite heat transfer coefficient,

can be related to 3 main

II. finite number of plates, screens, or particle layers, and

III. axial conduction caused by finite thermal resistance of insula-

ting spacers or by finite contact resistance.

Other sources of inefficiency such as flow maldistribution or heat transfer

from the surroundings are assumed tc be small. It may be noted that even with

infinite heat transfer coefficient and zero axial conduction, the effectiveness

~s less than unity solely due to the finite number of heat transfer members in

the bed.

THEORY

Figure 1 gives a schematic and a typical temperature profile in a segmen-

ted counterflow heat exchanger made of

insulating spacers. In this c~per the
,..

plate, wire screen, particle iayer;-’Or

the two fluid streams and itself has a

a finite number of plates separated by

word “plate” stands for a perforated

any other metallic member that couples

very high internal conductivity. Dimen-

sionless temperatures have been illustrated in the insert in Figure 1.

Let Tk = temperature of the kth plate, assumed uniforr,lover the plate;

t~l) = temperature of the “rein”fluid when entering the kth plate; and

(2)
tk M temperature of the “max” fluid when leaving the k

th plate. The sub-

scripts “rein”and “NJX” and the superscripts (1) and (2) refer to the fluid

streams with smaller and larger heat capacity flow rate (rhcp)respectively.

It is further assumed that there are two fictitious plates at temperatures:

To+)= inlet temperature of “rein”fluid; and

,.. .. ... ..,.
-3-
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T = t;:; = inlet temperature of “max” fluid, n being the totaln+l

‘1) d t~z) the respective exit temperatures.number of plates and tn+l an

Referring to Fig. 1, an energy balance over the control volume around the

~th plate gives:

c
rnin 41)- J!!)+ (~)k(Tk-l - ‘k)=(

cmax (
t~2)-#;)+(>)k+,(Tk-T k+l) ; (1)

where K ❑ thermal conductivity of the insulating spacer,

Ac = cross sectional area of the spacer,

& = length of the spacer between plates,

n ❑ number of plates in the heat exchanger, and the subscript k refers

to the spacer between the (k-l)th and kth plates.

Equation (1) may be simplified by defining two dimensionless parameters,

~ m Cmin— = capacity rate ratio (?a)
cmax

and ()KA cs—
RI

,’nCmln
k

= axial conduction parameter for the spacer

between (k-1)th and kth plates.

It shouldbe noted tha; ~~ --------

‘1 ‘An+l ‘0

because the two ends of the heat exchanger are adiabatic. Then

(2b)

,-

(2C)

,,. .,, —.
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I

(~f)

“‘w+nvA4Tk-l-TJ=t~2)-‘:f:+nvAk+l(Tk-‘k+l)‘3)
The inlet and exit fluid temperatures over a particular (kth) plate, which is

at a uniform temperature Tk, are related by the equations [7]:

()
-N(l‘/n~::;- T

k=#)-Tke ‘u (4a)

-N~fi’/n
and

(p)
‘k - h’ ( )

= Tk - t~~~ e (4b)

(2)N~~) and Ntu are ‘he ‘ne-side ‘tu‘s of the respective sides and n is the

total number of plates. The overall design Ntu is related to them as:

()ND= 1 + v ‘1

tu N(l)
tu

$:)
(5)

The three sets of equations (3), (4a), and (4b) numbering 3n determine the 3n

l<k<n; t~1),2Sksn+l; and tkvariables: ‘k’ - -
‘2), lSk<n.

The variables t~l) and t(2)‘+l are the”known inlet temperatures of the two

fluid streams.

The following dimensionless temperatures and temperat,me differences are

defined to express the governing equations in dimensionless form,

‘k - t::{
ek m——. ‘k-1 - ‘k

t~l)- t(2)’ ‘k ‘ek-, -@k =

.—
(1)” ~(2) ;

n+l t, n+i

(1)- T (2)
(1)= ‘k k (2) . ‘k - ‘k+l

‘k
t+l) (2) ; ‘k

- ‘n+l
t{l) (2)

- ‘n+l

(6)

.-, !..



These dimensionless temperatures have been illustrated in the insert in Fig. 1.

(1)It may be observed that~k ancl~~2) are the temperature differences of the

two fluid streams from that of tbe k
th plate at their res~ctive inlets to the

plate.

(1)Thus T, =Al and~~2) =An+l.

Let (7)

Then Eqs. (3) and (4) reduce to:

( )V 1~)-~}~1 +Ak+] + nVA#~ =({~)-{~!l +Ak)+ nv Ak+,Ak+, ; (8]

11) =Ak+l +B1#~)k+l (9a)

(2) (2) (9b)and~k-1 ‘Ak+B2Tk

(1) (z)EliminatingTk+l and~k-l between Eqs. (8) and (9)

(M31)vf) =(1-B2)+) +++lq+, -w)

(lo)

1 -6+ nvA kwhere P = (11)—V afld~k ‘—
1 -B2 1 -B2

The 3n linear”aTgebrdice’t(tkltfons(9a), (9b), and (10) completely cfetennine

the temperature field. In appendix A, the system is further reduced tb a set

(1),(2)of only n equations by eliminating the fluid temperatures‘ck . The

.,. -.
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coefficient matrix is in pentadiagonal form, which can be solved using standard

algorithm [8]. Considering that n is a fairly large number, the computer solu-

tion of this

cal solution

ever, yields

set of equattons is not trivial. Attempts to generate an analyti-

have been unsuccessful. The following approximate procedure, how-

a convenient formula for the efficiency.

As discussed earlier, the efficiency of the heat exchanger can be ascribed

to 3 sources: (1) finite heat transfer coefficient, (II) finite number of

plates, and (111) axial conduction through the insulating spacers. An exact

analytical model incorporating sources I and II yields a closed form solution

for the efficlencycl+ll. On eliminating the source I by setting the heat

transfer coefficient h+ W, we obtain the efficiency cll. A second model in-

cluding sources II and 111 yields the efficiency cll+lll. For most cryogenic

heat exchangers the inefficiencies are small and those from different sources

can, in general, be added. Thus,

‘1+11+111 = ‘1+11 + ‘11+111 - ‘II

where i z inefficiency = 1 - c. ‘~quation (12) can also be written as:

‘1+11+111 “I+II “II+HI “TI

(12)

(131

HEAT EXCHANGER WITH FINITE NUMBER OF PLATES

AND FINITE HEAT TRANSFER COEFFICIENT (I + II)

Because it is assumed that the spacers have infinite thermal resistance in

the axial direction, the successive plates have nc coupling between them. The

overall exchanger may be considered to be made of n identical units operating

in series, the design Ntu of each individual unit being N~u/n. The efficiency

...<. . . . . - ,,-. z. . . ., -. ,

-7-



of such a heat exchanger is given by Kays and London [7] as:

(14)

lk -c
with p = (15)

1 -VE k

where Ck

one plate

s the efficiency of any individual exchanger composed of only

The governing equations for the kth unit are Eqs. (9) and (10) with

(16)

1 -B,
= (17)

l+p

and

(1) (1) (1 +)+
‘k - ‘k+l =

‘k= (1) (~) (1) +T(2)
‘k - ‘k+l ‘k k

(1)
(1 ‘@, )Tk

=

(1 +Il)f)

Substituting this result in Eq. (15)

P=

and using Eq. (11)

I.I+B,
(18)

1+1.1B2

Thus the efficiency of a segmented exchanger of n plates without axial

conduction through the spacers is given as:

.-.. ..,——.-. - #

cI+I~ ‘d
1 -vPn

.,. —.

-8-



,.

Ll +$,
where P

‘1+PB2

Although the ~bove derivation yields

not provide the detailed temperature

in Appendix B.

SDecfal cases:

andp=L!Jv
1 -02

an expression for

profile. Such an

.

the efficiency, it does

analysis is presented

(Al Infinite heat transfer coefficient (II):
~,:j) = N:;) +CQ.

In this limitB1 =B2=0, leadingtou ‘~ and L ‘~.

Then

(19)
.1 -v

n
-:.-—

’11
1
- “n+l

(B) Balanced Flow: v = 1.

In the ca~e ofv =lwehavep= 1, and Eqs. (14) and (19) are in-

determinate. Using L’Hospital’s rule Eq. (14) reduces to

“’n-w+) (1+32)

‘1+11=
n (1-B,) (1-B2) + (1-B,132)

and Eq. (19) reduces to

n
’11 ‘—n+l

(20)

(21)

(C) Balanced Design: N~~) = N~~).

In this case, using Eq. (5)

$1)+)=(1 +V)N:U
tu

,... . . . - ..*,. -

-9-



Let i30 ‘e- (1+v) N!!u/n

Then Eqs. (14) md (18) reduce to

V+Bkwith p=‘1+11=
1 +V 130

“1-vPn

In the event of balanced design and balanced flow:

n (l-Bo)

‘1+11 = —
n (l-Bo) + (1+6.)

(D) Continuous heat exchanger: n+= .

In the limit of large n,

-N(l‘/n J1 ) -N(2)/n $2)

0, =e ‘u = 1 ---#- ancl$2 =,tu =1-+

Substituting in Eqs. (11) and (18), and using Eq. (5), we get:

Jj)
1 N~u = e

-(1 - v) N~u/n
—v -v

P= andp= l-—
(?) n

‘tu

Using Eq. (25), Eq. (14) gives:

-(1 -v) N:u

1 -e
‘1+11=

1 -Ve-(l -V)N~u

(22)

(22)

(24)

(25)

(26)

.- -, -. .- .-

Equation (26) Is the fam~liar expression [7] for the efficiency of continuous

counterflow heat exchanger.

. . . . .“- .

-1o-



HEAT EXCHANGER WITH FINITE NUMBER OF PLATES

ANDFINITE LONGITUDINALCONDUCTION(;1 + III)

Since the Ntu of each plate is infinite on both sides, the ?Iu;l exit

temperatures are equal to the corresponding plate temperatures.

0, =(32 =O;l.1=vandyk=nvAk

Fram Eq. (9)

(1)
‘k =Ak and~~2) =Ak+l (27)

Substituting in Eq. (10)

Ak+i =vA
k

(
+ ‘v ‘kAk ‘Ak+l ‘k+l))

(28)

Assuming that all the spacers are identical, i.e., kk =A for 2$ k ~ n and Al =

An+l ❑
o,

Eq. {28) can be rewritten as:

A k+l ‘qAk; ~2k~n-l
\

with

A2=qA1/(l+nA)andAn+l =V (l+nA)An

where

q=v(l +“ni’jj(l +v nA);

Successive application ofEq. (29) gives

= qk-’
n-1 A

‘k A1/(l+nA); 2S ks nwith An+l ‘V q 1

n+l
Substituting Eq. (31) into the relatlon

F ‘k = 1 and solvlng,
■1

1 -v n-1

‘1 = and An+l “v q‘-1 Al =Vq
1 - ~2qn-1

1 -v 2 qn-l

..-, -.
-“-ii’:”’

(29)

(30)

(31)

(32)

., ..,..,



Then the efficiency cll+lll ❑ 1 -An+l ❑

1 -v (ln-’ with q =v~

1 - “Zqn-l
l+vn~

(33)

Special cases

(A) Zero axial conduction: A =0
n+l

In this limit q xv andcll = (1 -Vn)/(l -v ).

This is the same result as Eq. (19).

(B) Balanced flow: v = 1

IIIthe case ofv =l,q= 1 and Eqs. (33) and (19) are indete~mi-

nate. Using L’Hospital’s rule, Eq. (33) reduces to:

n (1+A)
‘11+111 ❑

(34)

l+n(l+2A)

and Eq. (19) reduces to:

(C) Continuous

Inthelimitn+~,

n
cII=— n+l

heat exchanger: n+ ~.

the spacer lengthfl)approaches 0; but A is still

finite and may be defined as A =ICAc/LCmin, L being the overall length

of the heat exchanger. Then q= 1 - (1-v)/nAv. Using the relution

Lim (l+x)l/x = e wc get qn = e-(14 ‘fiv= qn-l. Substituting

this relation in Eq. (33) we get

-.. .w!.—----.

.%

1 -v
‘11+111 =

e

-h
Av.,. , ,.,.--Q2 e

- 12”:

.-

(35)



In the limit of n+ ~ andv = 1, using L’Hospital’srule, Eq. (35) gives:

sl+~=,J (36)‘11+111
1+2A

EFFICIEKY OF THE OVERALL EXCHANGER

Combining Eqs. (14), (19), and (33) by the relation (13), we get

1“+1
n-1

‘1+11+111 = - p
-Vq -l-vn

1 -Vpn 1 - “2qn-1 , - “n+l
(37)

l.l+0, v(l+n A) 1-6, “
with P “ ;q= andp=—

1+M32 l+vnl 1-132

Similarly for balanced flow (V = 1) operation Eqs. (20), (21), and (34) give:

n (1-111) (1-132) n(l+A) n
CI+II+III ■

+– - — (38)
n (1-61) (l- 132) + (1-i31132) l+n(l+2k) n+l

“In the”case of balanced design 131’“-”””2”= b ,’the efficiency is still given

by Eqs. (37) or (38) except that

V+fio -(’i+v ) N~u/n
P= with Bo= u

1+V60

The overall effectiveness can be reduced tr an effective Ntu by the relatlon [7]

Neff ❑ 1
tu , -v In _ (39)

. . . . . . !,..* . . , ,

-13-
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effLikec, Ntu is a function of N~u, v, A, and n. eff ,~In Fig. 2, Ntu

plotted against N~u for selected values of A and n withv = 1. The Ideal Kays

and London formula [7] for n+ = andl = O is represented by the straight line

with slope = 1. It may be obse:ved from the curves with A = O that the effect

of finite number of plates becomes significant when the per stage &

(= N~u/n) exceeds 0.5. If it is higher than about 2, the effective Ntu

approaches the number of plates n, confirming that it is not possible to exceed

an effective Ntu of 1 per each plate.

In the presence of axial conduction, the efficiency is further reduced ~s

shown iiiFig. 2. The result of Krreger 115]for a continuous exchanqer withA =

0.01 is indistinguishablefrom our calculation with n = 1000 over the range of

ND
tu

Shown in the figure. It4s seen from Fig. 2 that at high values of N~u

the effective Ntu is determined by n and A.

In the limit ofcontinucms exchanger (n+=), C1l ■ 1 and Eqs. (13), (26),

and (35) give

-(1+) N:u - (l-v)

1 -e 1 -ve
Av

‘1+111‘— + -1

-(lu) N:u
1 -ve l-v~e-~~

which reduces to

ND ND
tu +-I+A A

CI+III ■ ~ ‘“
l’tu-—

1 *2A D
‘tu+ ‘ ‘tu + ‘ 1+2A

.. .“!-..-

(40)

(41)

...

for balanced flow (v ■ 1) operation. If the axial conduction parameter Is

sufficientlysmall, Eq. (41) and Eq. (20) of Ref. 5 yield the same values for

the effectiveness.
,., .... !.-,,.

,.

-14-
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APPENDIX A

The governing equations may be summarized as:

(1) =~k+l +~,T~l)wf~@) =~1

‘1(+1 {9a)

~:z; (2) with T~2) ‘An+l‘Ak+@Z?k (9b)

and~~2) =lJ T~l) ‘y#k ‘yk+, ‘k+, (lo)

By successive application of Eqs. (9a) and (9b), respectively, we get

(1)= k
&

(k-i)A,
‘k B,

n

ai,d T~2) =
& By-k-l )A= J

Substituting these expressions in Eq. (10)

k

%

k-i“+1 ~~-k-l Aj ‘~,~, 61
‘i+y$k-yk+l Ak+l ;l:k:n

j= +1

Substituting k+l for k In Eq. (A3),

‘+1 k-f+l

? F

n+l ~~-k-2Aj =V B1
‘j ‘yk+l Ak+l‘Yk+2Ak+2 ; 1 f ks n-l (Ad)

j= +2 =1

And substituting k-l for k In .Eq-..(A3), ..

‘25k<n
k-l k-i-l A, +yk-1 ‘k-l

‘yk Ak, (A5)~’Bj-KAj ‘% %
4-: d

,,. , .,.-,...

(Al)

(A2)

(A3)

-16-



,.

Multiplying Eq. (A4) bYB2, subtracting from Eq. (A3) and rearran9in9,

(1 +Pb2)A k+, =IJ (1 -6,B2) 5 +-iAi +ykAk - (l+@2)yk+l ‘k+l
f=1

.l<kfn-l(A6)‘B2yk+2Ak+2 ‘ -

Substituting k for k+l in Eq. (A6),

(1 +~b2)Ak ‘P (1 -01f32) ‘~lB~-i-l ‘i “k-l ‘k-l ‘Yk*k(l+ 62)
i=1

‘B2yk+l Ak+l ‘2 SkSn (A7)

‘-1 k-i-1on eliminatin9 ~1 B1 Al between Eqs. (A6) and (A7), and rearranging,

bk*k-, + c~k + dk*k+, + ek*k+2 = ();2$ k< n-l (M)

where

bk %yk-l . ..4.,-

ck = - ~ ‘B, + (l+ b,+d,S2)yk]

dk”l+ll B 2 + ‘k+l (1 +B2+B,92)

‘k ■ ‘02yk+2

On letting k ■ 1 in Eq. (A6) and rearranging,

CIA1 +d1A2+e1 *3-0

where

c1
.-p (1 -B1B2)

d1=l+pf32+y2(l+B2)

e, ‘-@2y3

(A9)

(A1O)

(All)

.,-,...,,., . . . . l., e..,,

-17-



On multiplying Eq. (A5) with 81, subtracting from Eq. (A3) and rearranging,

(1 -01S2)
?

‘+1 ~j..k-l*
= (P+ B1)Ak ‘yk+l ‘k+l

j= +1 j

+ (l+Bl)ykAk ‘Blyk-l*k-?; 25 k: n (A12)

which, for k = n, reduces to:

bn An-l + cnAn ‘An+l (A13)

‘1 yn-1 (ll+B, +Yn+6, Yn)
where, bn = - and c = (A14)

(1 -131132)
n 1 -8,62

DefiningA~ ❑Ak/An+l, Eqs. (A8), (A1O), and (A13) can be rewritten as:

I I

bkA;-l + C#; + ‘k ‘k+l + ‘k Ak+2 ❑ ‘k

Eqs. (A9), (All), and (A14) define the COnStantS bk, ck, dk, and ek.

Besides, bl ❑ dn = en ■O, fn=l, and fk=Oforl SkSn-1

(A15)

(A16}

From Eq. (A9) it should also be noted that b2 ■ en-l = O.

This set of equatio~lsmay be solved forA~ using the algorithm of Ref. 8. The

complete temperature picture may be obtained by using the relations

.

()
-1

I

A n+l ■1+4$, A; and Ak ‘An+l ‘k
.. ,“...-.-, .“
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APPENDIX B

HEAT EXCHANGER WITH FINITE NUMBER OF PLATES AND FINITE HEAT TRANSFER

COEFFICIENT: TEMPERATURE PROFILE

Since axial conduction is absent

Y~ =O;lfk<n+l

Substituting this condition in Eqs. (A8) and (A9)

P +61

‘1(+1= Ak=p& “z$k~n,l
1+LIB2

Similarly from Eqs. (A1O) and (All)

P (1 -tl,~~)

‘2 = ‘1 =(P-B1)A1
l+llB2

and from Eqs. (A13) and (A14)
. ......

P+B1

A n+l =
An =&A

‘- B1B2 p-~, n

n+l

Using the relation ~ Ak ■ 1, Eqs. (B2-B4) give
k=l

‘1=—
p(l-~) ;

(P +s,) (1 -Vpn)

(Bl)

(B2)

(B3)

(B4)

r-, -“13-’:- ‘



‘k=p
‘-2 (FI -t3, )A, ;2<k<n

and An+l ‘P
n-1 ~ Al

Eq. (B5) completely describes the temperature field.

The efficiency of the heat exchanger is now given as:

-T(l)
‘1+11= ‘ n+l

= 1-
‘+1 n+l-j Az ~, i (using Eq. !Al)
i=1

❑(1 - Pn)/(1 -vPfl).

Eq. (B6) i~ the same as Eq. (14).

.., ------

(B5)

(B6)

,-, ,, ●! -.. .
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NOMENCLATIJRE

Ac . ~~~~~ ~~~tf~n~l ~~~~ (~2)

bk ‘
f = coefficients in governing equationsCk’ ‘k’ ‘k’ k

C = fluid heat capacity flow rate

‘k ~ (W/K)

i = inefficiency

=1-G

L = overall length of heat exchanger (m)

L = length of insulating spacer between two . isive plates (m)

n = number of plates in heat exchanger

‘Bi = Biot number

‘Nu = Nusselt number

Ntu = Number of heat transfer units

p=(ll+B, )/(l+M 32)

q=v(l+nA)/(l+vnA)

(1)

‘k = temperature of the fluid with smaller heat capacity flow rate while

entering the k‘h plate (K)”’ ““

(2)
‘k = tem~rature of the fluid with larger heat capacity flow rate while

leaving the k‘h plate (K)

Tk ● WIpOPaWre Of kth plate (K) with To = t$l)

PO . e-(l+~)N~u/n

a))dTn+l = t::;

IJ,,2=8
-N~:)(2),n

~k =vnAk/(l -bz)

Ak = (Tk.1 - Tk) / (t! - t:+,)

A’
k
Mb /b

k n+l

c = overall efficiency of heat exchanger

th
‘k = efficiency of k plate

K E thermal conductivity (U/.rnK,).... ... ...

-21-



NOMENCLATURE cont...

‘k = axial conduction parameter for the spacer

between (k-l)th and kth plates

= (KAc~ )k/[lLminwith Al = An+l ❑ O

A= axial conductivity parameter when all spacers are identical

P =V (1-B,) / o-q

v = capacity rate ratio

= Cmin/cmax

t ( )/( ) = dimensionless fluld temperature

~f~ ;; :I;;p{:;;:::;:;) - ‘::!
dimensionless plate temperature

Subscripts:

k : kth plate

min : fluid stream with smaller heat capacity flow rate

max : fluid stream with larger heat capacity flow rate

I: finite heat transfer coefficient

II : finite number of plates

III : axial conduction

Superscripts:

u: design

(1) : fluid stream with smaller heat capacity flow rate

(2) : fluid stream with larger heat cdpacity flow rate

... .-,—.... .-

. ... . .,. ---
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FIGURE CAPTIONS

Fig. 1. Plate and fluid temperature profiles in a segmented heat exchanger.

The insert illustrates dimensionless temperatures.

Fig. 2.
‘he ‘ffective ‘tu

in a segmented heat exchanger shown against

design Ntu for selected values of number of plates n, and axial

conduction parameter A. —— n+~, A=O; .---- A ❑ o;

-,----- A = 0.01. The curve for n+ ~ and A = 0.01 coincides

with that for n = 1000, A ❑ 0.01 for this range of N!u.

- . . . .

,.., .. . 7- &#w..,
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